Horizontal and vertical log-concavity

نویسندگان

چکیده

Abstract Horizontal and vertical generating functions recursion relations have been investigated by Comtet for triangular double sequences. In this paper we investigate the horizontal log-concavity of sequences assigned to polynomials which show up in combinatorics, number theory physics. This includes Laguerre polynomials, Pochhammer D’Arcais Nekrasov–Okounkov polynomials.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matroids and log-concavity

We show that f -vectors of matroid complexes of realizable matroids are strictly log-concave. This was conjectured by Mason in 1972. Our proof uses the recent result by Huh and Katz who showed that the coefficients of the characteristic polynomial of a realizable matroid form a log-concave sequence. We also prove a statement on log-concavity of h-vectors which strengthens a result by Brown and ...

متن کامل

Bell Numbers, Log-concavity, and Log-convexity

Let fb k (n)g 1 n=0 be the Bell numbers of order k. It is proved that the sequence fb k (n)=n!g 1 n=0 is log-concave and the sequence fb k (n)g 1 n=0 is log-convex, or equivalently, the following inequalities hold for all n 0, 1 b k (n + 2)b k (n) b k (n + 1) 2 n + 2 n + 1 : Let f(n)g 1 n=0 be a sequence of positive numbers with (0) = 1. We show that if f(n)g 1 n=0 is log-convex, then (n)(m) (n...

متن کامل

Log-Concavity and Symplectic Flows

We prove the logarithmic concavity of the Duistermaat-Heckman measure of an Hamiltonian (n− 2)-dimensional torus action for which there exists an effective commuting symplectic action of a 2-torus with symplectic orbits. Using this, we show that any symplectic (n− 2)-torus action with non-empty fixed point set which satisfies this additional 2-torus condition must be Hamiltonian.

متن کامل

Log-concavity and LC-positivity

A triangle {a(n, k)}0≤k≤n of nonnegative numbers is LC-positive if for each r, the sequence of polynomials ∑n k=r a(n, k)q k is q-log-concave. It is double LC-positive if both triangles {a(n, k)} and {a(n, n − k)} are LC-positive. We show that if {a(n, k)} is LC-positive then the log-concavity of the sequence {xk} implies that of the sequence {zn} defined by zn = ∑n k=0 a(n, k)xk, and if {a(n, ...

متن کامل

Negative correlation and log-concavity

OF THE DISSERTATION Negative correlation and log-concavity by Michael Neiman Dissertation Director: Jeff Kahn This thesis is concerned with negative correlation and log-concavity properties and relations between them, with much of our motivation provided by [40], [46], and [12]. Our main results include a proof that “almost exchangeable” measures satisfy the “FederMihail” property; counterexamp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Research in number theory

سال: 2021

ISSN: ['2363-9555', '2522-0160']

DOI: https://doi.org/10.1007/s40993-021-00245-1